Polymorphism of Potassium Ferrocyanide Trihydrate as Studied by Solid-State Multinuclear NMR Spectroscopy and X-ray Diffraction

Mathew J. Willans, Roderick E. Wasylishen,* and Robert McDonald

Department of Chemistry and X-ray Crystallography Laboratory, University of Alberta, Edmonton, Alberta, Canada T6G 2G2

Received November 7, 2008

The polymorphism of bulk powder samples of potassium ferrocyanide trihydrate (K_4 Fe(CN)₆·3H₂O, KFCT) has been studied using ¹H, ¹³C, and ¹⁵N NMR spectroscopy in combination with X-ray diffraction. At room temperature, KFCT typically crystallizes in a monoclinic C2/c form, which converts irreversibly to a monoclinic Cc form upon cooling below -25 °C. The structure of both of these forms has been determined using single-crystal X-ray diffraction. A less common metastable tetragonal $\frac{1}{4}$ form is also known to exist at room-temperature. This tetragonal form also converts to the monoclinic Cc form upon cooling, although this phase transition is irreversible and occurs at -60 °C. Initial room-temperature ¹⁵N MAS NMR spectra and powder X-ray diffraction patterns of ground powder samples of KFCT prepared using a variety of crystallization methods suggested that only the C2/c form was obtained from a bulk crystallization. The ¹³C MAS NMR spectra consisted of six peaks with equal integrated areas, a result that is inconsistent with the ¹⁵N NMR spectra and known crystal structures. When the samples were not ground, the relative areas of the ¹³C NMR peaks were altered, indicating that the bulk samples in fact consisted of the two known forms of KFCT. Using the known temperature dependence of these two polymorphs, the ¹³C peaks corresponding to each of the C_2/c and $l_{1/a}$ forms were assigned. The ¹³C NMR spectra and powder X-ray diffraction results demonstrate that upon grinding, a near 50-50 mixture of the two forms is always produced, rather than a new form entirely. The insensitivity of the ¹⁵N NMR spectra to the polymorphism of KFCT is surprising, and likely arises from a fortuitous overlap of the ¹⁵N NMR peaks of the two forms.

Introduction

The cyanide ligand is one of the most versatile ligands in inorganic chemistry, capable of forming monomeric and polymeric complexes with the majority of elements in the periodic table.^{1,2} Our research group has long been interested in metal cyano chemistry, particularly in using multinuclear solid-state NMR spectroscopy to characterize such complexes.^{3–9} Although numerous other solid-state NMR studies of cyano complexes have appeared in the literature,^{10–30} no

studies have focused on the simple salts of the group-8 metals. The cyano chemistry of this group, particularly the ferrocyanide ion, $[Fe(CN)_6]^{4-}$, dates back over 300 years to the accidental discovery of Prussian Blue,^{1,31} a coordination compound that only relatively recently was determined to have the formula $Fe^{II}_4[Fe^{II}(CN)_6]_3 \cdot xH_2O$ (x = 14-16).³² Currently, there is great interest in the ferrocyanide anion as a building block in supramolecular magnetic materials.^{35–38}

Inorg. Chem. 2009, 48, 4342-4353

Inorganic Chemistr

In the solid state, the most commonly studied diamagnetic ferrocyanide compound is its hydrated potassium salt, K_4 Fe(CN)₆•3H₂O (herein referred to as KFCT).³⁹⁻⁶⁰ At -25 °C, KFCT undergoes an interesting second-order phase transition from a paraelectric to a ferroelectric phase.^{48,49} The ferroelectric transition is believed to be initiated by changes in the dynamics of the water molecules, which

^{*} To whom correspondence should be addressed. E-mail: roderick.wasylishen@ualberta.ca. Phone: 780-492-4336. Fax: 780-492-8231.

Dunbar, K. R.; Heintz, R. A. Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives. In *Progress in Inorganic Chemistry*; Interscience Publishers: New York, 1997; Vol. 45, pp 283–391.

⁽²⁾ Sharpe, A. G. The Chemistry of Cyano Complexes of the Transition Metals; Academic Press: New York, 1976; pp 302.

⁽³⁾ Wu, G.; Wasylishen, R. E. J. Phys. Chem. 1993, 97, 7863-7869.

⁽⁴⁾ Wu, G.; Kroeker, S.; Wasylishen, R. E. Inorg. Chem. 1995, 34, 1595– 1598.

⁽⁵⁾ Kroeker, S.; Wasylishen, R. E.; Hanna, J. V. J. Am. Chem. Soc. 1999, 121, 1582–1590.

⁽⁶⁾ Kroeker, S.; Wasylishen, R. E. Can. J. Chem. 1999, 77, 1962–1972.

⁽⁷⁾ Bernard, G. M.; Eichele, K.; Wu, G.; Kirby, C. W.; Wasylishen, R. E. *Can. J. Chem.* **2000**, *78*, 614–625.

⁽⁸⁾ Bryce, D. L.; Wasylishen, R. E. Inorg. Chem. 2002, 41, 4131–4138.

 ⁽⁹⁾ Forgeron, M. A. M.; Wasylishen, R. E. J. Am. Chem. Soc. 2006, 128, 7817–7827.

Polymorphism of Potassium Ferrocyanide Trihydrate

undergo rapid reorientations about more than one axis at room temperature^{41,57,59} and become ordered when cooled below the Curie temperature.⁴¹ The change in the water dynamics is accompanied by a phase change from monoclinic *C2/c* (a = 9.379 Å, b = 16.844 Å, c = 9.392 Å, $\beta = 90.07^{\circ}$)^{39-41,45} above the transition temperature to monoclinic *Cc* (a = 9.353 Å, b = 16.755 Å, c = 9.359 Å, $\beta = 90.08^{\circ}$) at low temperature.^{44,45}

Studies of ferroelectricity in KFCT have been complicated by its tendency to form crystals that are twinned and as a result, some "single-crystal" experiments have been performed on what were actually twinned crystals.^{41,45,48,49,55,59} In practice, a bulk crystallization of KFCT at room temperature can produce a mixture containing the common monoclinic C2/c form, a less common tetragonal form $(I4_1/a, a =$ 9.410 Å, c = 33.67 Å)^{37,41} whose structure has yet to be refined, and three forms that are composed of different types of twinned crystals.⁴⁴ The tetragonal form is metastable and upon cooling below -60 °C the individual crystals convert to the aforementioned monoclinic *Cc* form. When warmed back to room temperature, the same crystals convert to a

- (10) Nishikiori, S.; Ratcliffe, C. I.; Ripmeester, J. A. Can. J. Chem. **1990**, 68, 2270–2273.
- (11) Nishikiori, S.; Ratcliffe, C. I.; Ripmeester, J. A. J. Chem. Soc., Chem. Commun. 1991, 735–736.
- (12) Nishikiori, S.; Ratcliffe, C. I.; Ripmeester, J. A. J. Am. Chem. Soc. 1992, 114, 8590–8595.
- (13) Apperley, D. C.; Davies, N. A.; Harris, R. K.; Eller, S.; Schwarz, P.; Fischer, R. D. J. Chem. Soc., Chem. Commun. **1992**, 740–741.
- (14) Behrens, U.; Brimah, A. K.; Soliman, T. M.; Fischer, R. D.; Apperley, D. C.; Davies, N. A.; Harris, R. K. *Organometallics* **1992**, *11*, 1718– 1726.
- (15) Curtis, R. D.; Ratcliffe, C. I.; Ripmeester, J. A. J. Chem. Soc., Chem. Commun. 1992, 1800–1802.
- (16) Eller, S.; Schwarz, P.; Brimah, A. K.; Fischer, R. D.; Apperley, D. C.; Davies, N. A.; Harris, R. K. Organometallics **1993**, *12*, 3232–3240.
- (17) Brimah, A. K.; Siebel, E.; Fischer, R. D.; Davies, N. A.; Apperley, D. C.; Harris, R. K. J. Organomet. Chem. **1994**, 475, 85–94.
- (18) Harris, R. K.; Sunnetcioglu, M. M.; Fischer, R. D. Spectrochim. Acta, Part A **1994**, 50, 2069–2078.
- (19) Exstrom, C. L.; Sowa, J. R.; Daws, C. A.; Janzen, D.; Mann, K. R.; Moore, G. A.; Stewart, F. F. Chem. Mater. 1995, 7, 15–17.
- (20) Lobbia, G. G.; Cecchi, P.; Gobetto, R.; Digilio, G.; Spagna, R.; Camalli, M. J. Organomet. Chem. **1997**, 539, 9–17.
- (21) Bowmaker, G. A.; Churakov, A. V.; Harris, R. K.; Oh, S. W. J. Organomet. Chem. 1998, 550, 89–99.
- (22) Brimah, A. K.; Schwarz, P.; Fischer, R. D.; Davies, N. A.; Harris, R. K. J. Organomet. Chem. 1998, 568, 1–12.
- (23) Ding, S.; Jones, N. D.; McDowell, C. A. Solid State Nucl. Magn. Reson. 1998, 10, 205–210.
- (24) Siebel, E.; Fischer, R. D.; Kopf, J.; Davies, N. A.; Apperley, D. C.; Harris, R. K. Inorg. Chem. Commun. 1998, 1, 346–349.
- (25) Siebel, E.; Fischer, R. D.; Davies, N. A.; Apperley, D. C.; Harris, R. K. J. Organomet. Chem. 2000, 604, 34–42.
- (26) Poll, E. M.; Schutze, J. U.; Fischer, R. D.; Davies, N. A.; Apperley, D. C.; Harris, R. K. J. Organomet. Chem. 2001, 621, 254–260.
- (27) Avalle, P.; Harris, R. K.; Hanika-Heidl, H.; Fischer, R. D. Solid State Sci. 2004, 6, 1069–1076.
- (28) Draper, N. D.; Batchelor, R. J.; Aguiar, P. M.; Kroeker, S.; Leznoff, D. B. Inorg. Chem. 2004, 43, 6557–6567.
- (29) Katz, M. J.; Aguiar, P. M.; Batchelor, R. J.; Bokov, A. A.; Ye, Z. G.; Kroeker, S.; Leznoff, D. B. J. Am. Chem. Soc. 2006, 128, 3669–3676.
- (30) Ouyang, L.; Aguiar, P. M.; Batchelor, R. J.; Kroeker, S.; Leznoff, D. B. Chem. Commun. 2006, 744–746.
- (31) Wills, A. S. Magnetism. In Annual Reports on the Progress of Chemistry, Section A: Inorganic Chemistry; Royal Society of Chemistry: London, 2005; pp 472–488.
- (32) Ito, A.; Suenaga, M.; Ono, K. J. Chem. Phys. 1968, 48, 3597-3599.
- (33) Buser, H. J.; Schwarzenbach, D.; Petter, W.; Ludi, A. *Inorg. Chem.* **1977**, *16*, 2704–2710.
- (34) Herren, F.; Fischer, P.; Ludi, A.; Halg, W. Inorg. Chem. 1980, 19, 956–959.

twinned C2/c monoclinic form whose twin domains are related by a 90° rotation about the monoclinic *b*-axis.^{44,52,60}

In a bulk crystallization, the relative amounts of the forms can be manipulated by altering the crystallization rate, temperature, and solution composition.⁴² Rapid crystallizations tend to produce more of the pure forms, while twinning becomes more prevalent with long crystallization times.⁴⁴A greater yield of the monoclinic modification is obtained at room temperature and with the addition of potassium chromate, while the tetragonal modification is preferred at elevated temperatures and crystallizations from a KOH solution.⁴²

The majority of the structural studies of KFCT have been performed on single-crystals, and the complex crystallization behavior of bulk powder samples of KFCT is not fully understood. Although solid-state ¹H and ²H NMR spectros-copy has been used to study the dynamics of the water molecules in KFCT,^{45,57–59} solid-state NMR has yet to be used to study the solid ferrocyanide anion directly. Thus, we have used ¹³C and ¹⁵N magic-angle spinning, MAS, NMR spectroscopy, in combination with single-crystal and powder X-ray diffraction, to gain an understanding of the suprisingly complex polymorphism of KFCT.

Experimental Section

Sample Preparation. For the room-temperature ¹³C MAS and stationary sample NMR experiments, a sample of 17% ¹³C,¹⁵N-labeled (i.e., 1 in 6 CN ligands) potassium ferrocyanide trihydrate, KFCT, was prepared by combining a 1:5 mixture of K¹³C¹⁵N (99% ¹³C and 98% ¹⁵N, CIL) and KCN (Aldrich) dissolved in distilled water with an aqueous solution of iron(II) chloride tetrahydrate (Alfa Aesar). A 4-fold excess of potassium cyanide over the stoichiometric amount was necessary to yield a pure final product. Immediately upon mixing the above solutions, the formation of a brown-red precipitate was observed. The mixture was allowed to stand for 24 to 48 h until the precipitate had dissolved and a yellow solution was obtained (typically 48 h). KFCT was precipitated by adding methanol and isolated by vacuum filtration. Subsequently,

- (35) Verdaguer, M.; Bleuzen, A.; Marvaud, V.; Vaissermann, J.; Seuleiman, M.; Desplanches, C.; Scuiller, A.; Train, C.; Garde, R.; Gelly, G.; Lomenech, C.; Rosenman, I.; Veillet, P.; Cartier, C.; Villain, F. Coord. Chem. Rev. 1999, 190–192, 1023–1047.
- (36) Bernhardt, P. V.; Bozoglian, F.; Macpherson, B. P.; Martinez, M. Coord. Chem. Rev. 2005, 249, 1902–1916.
- (37) Lescouezec, R.; Toma, L. M.; Vaissermann, J.; Verdaguer, M.; Delgado, F. S.; Ruiz-Perez, C.; Lloret, F.; Julve, M. *Coord. Chem. Rev.* 2005, 249, 2691–2729.
- (38) Verdaguer, M.; Girolami, G. S. Magnetic Prussian Blue Analogs. In Magnetism: Molecules to Materials V; Miller, J. S., Drillon, M., Eds.; Wiley-VCH: Weinheim, 2005; pp 283–346.
- (39) Pospelov, V. A.; Zhdanov, G. S. J. Phys. Chem. (U.S.S.R.) 1947, 21, 405–410.
- (40) Pospelov, V. A.; Zhdanov, G. S. J. Phys. Chem. (U.S.S.R.) 1947, 21, 879–880.
- (41) Taylor, J. C.; Mueller, M. H.; Hitterman, R. L. Acta Crystallogr. 1970, A26, 559–567.
- (42) Punin, Y. O.; Zhogoleva, V. Y. Inorg. Mater. 1980, 16, 1212-1215.
- (43) Gaffar, M. A.; Omar, M. H. J. Therm. Anal. Calorim. 2005, 81, 477– 487.
- (44) Toyoda, H.; Niizeki, N.; Waku, S. J. Phys. Soc. Jpn. 1960, 15, 1831– 1841.
- (45) Kiriyama, R.; Kiriyama, H.; Wada, T.; Niizeki, N.; Hirabayashi, H. J. Phys. Soc. Jpn. 1964, 19, 540–549.
- (46) O'Reilly, D. E.; Schacher, G. E. J. Chem. Phys. 1965, 43, 4222-4233.
- (47) Sastry, M. D. Phys. Rev. B 1976, 13, 1156-1160.
- (48) Waku, S.; Hirabayashi, H.; Toyoda, H.; Iwasaki, H.; Kiriyama, R. J. *Phys. Soc. Jpn.* **1959**, *14*, 973–974.

the solid was dissolved in a small amount of distilled water in a 20 mL beaker. This beaker was placed inside a 100 mL beaker filled partially with 95% ethanol, and the larger beaker was then sealed with parafilm. Pale yellow crystals of KFCT were obtained after allowing ethanol vapor to diffuse into the aqueous KFCT solution for 24–48 h at room temperature. The yield was 95% based on the iron(II) chloride tetrahydrate.

For the variable-temperature ¹³C NMR experiments, a 50% $^{13}C^{-15}N$ -labeled sample was prepared in the same manner as described above using a 1:1 ratio of K¹³C¹⁵N to KCN. A 98% ¹⁵N-labeled sample, used for the ¹⁵N stationary sample experiment, was prepared in the same manner described above by replacing the K¹³C¹⁵N, KCN mixture with KC¹⁵N (98% ¹⁵N, CIL). For all compounds, purity was checked via FT-IR spectroscopy and solution ¹³C or ¹⁵N NMR spectroscopy in D₂O (99%, CIL) using a Varian Inova 400 spectrometer. The ¹³C chemical shift of 177.28 ppm (relative to TMS) was in agreement with past studies.^{61,62} The ¹⁵N shift was 296.78 ppm relative to NH₃(*l*) at 298 K and ¹*J*(¹⁵N,¹³C)_{iso} was 7.2 Hz.

Crystallization Methods. The relative amounts of the five crystal types of KFCT that are obtained from a bulk crystallization are influenced by the crystallization rate, temperature, and by the addition of potassium chromate, K₂CrO₄, or potassium hydroxide, KOH.^{42,44,63} Crystallization of KFCT was attempted under combinations of three crystallization rates, two temperatures, and three solution compositions for a total of 18 crystallization conditions. All crystallizations were performed with approximately 125 mg of KFCT.

For rapid crystallization, KFCT was dissolved in 10 mL of distilled water and precipitated by the addition of 50 mL of 95% ethanol. For the high-temperature crystallization, both the KFCT solution and ethanol were heated to 55 °C before precipitation of KFCT. For a medium rate crystallization, slow-cooling was employed. For the room-temperature crystallization, the KFCT was dissolved in about 0.8 mL of distilled water at 55 °C, and the solution was allowed to cool to room temperature in a water bath over a period of about 4 h. Attempts at a high-temperature slowcooling crystallization were made by cooling a KFCT solution from 80 to 55 °C. Such crystallizations produced a supersaturated solution, and no crystals were obtained. Last, a slow crystallization was attempted using slow-evaporation of a saturated solution of KFCT. Because of the high solubility of KFCT in water, the small quantities of KFCT used (because of the necessity to isotopically label the samples), and the inability of KFCT to readily dissolve

- (49) Waku, S.; Masuno, K.; Tanaka, T.; Iwasaki, H. J. Phys. Soc. Jpn. 1960, 15, 1185–1189.
- (50) Waku, S.; Masuno, K.; Tanaka, T. J. Phys. Soc. Jpn. 1960, 15, 1698.
 (51) Fukunish, S.; Kittaka, S.; Makita, Y.; Waku, S. J. Phys. Soc. Jpn.
- **1967**, *23*, 1181–1182. (52) Gaffar, M. A.; Elkorashy, A.; Abdalla, A. M.; Almokhtar, M. *Physica*
- *B* **1994**, *193*, 277–283. (53) Hazony, Y. J. Chem. Phys. **1966**, *45*, 2664–2668.
- (54) Hazony, Y.; Earls, D. E.; Lefkowitz, I. Phys. Rev. 1968, 166, 507– 510.
- (55) Montano, P. A.; Shechter, H.; Shimony, U. Phys. Rev. B 1971, 3, 858-862.
- (56) Rush, J. J.; Leung, P. S.; Taylor, T. I. J. Chem. Phys. 1966, 45, 1312– 1317.
- (57) Blinc, R.; Brenman, M.; Waugh, J. S. J. Chem. Phys. 1961, 35, 1770– 1175.
- (58) Tsang, T.; O'Reilly, D. E. J. Chem. Phys. 1965, 43, 4234-4249.
- (59) O'Reilly, D. E.; Tsang, T. J. Chem. Phys. 1967, 47, 4072-4076.
- (60) Koptsik, V. A.; Krasnikova, A. Ya.; Strukov, B. A. Sov. Phys. Crystallogr. (Engl. Transl.) 1969, 13, 781–782.
- (61) Pesek, J. J.; Mason, W. R. Inorg. Chem. 1979, 18, 924-928.
- (62) Taura, T. Inorg. Chim. Acta 1989, 163, 131-132.
- (63) Petrov, V. M.; Krasnikova, A. Ya.; Yashumov, Es. Sov. Phys. Crystallogr. (Engl. Transl.) 1970, 14, 811–813.

in other solvents, the slow-evaporation method was not ideal and produced crystals of poor quality and small size. Thus, as a slow crystallization method, a two solvent crystallization was employed in which ethanol vapor was allowed to slowly diffuse into an aqueous solution of KFCT. At room temperature, this was achieved by dissolving KFCT in 5 mL of water within a 20 mL beaker, placing this beaker within a 100 mL beaker filled with 20 mL of ethanol and covering the larger beaker. The crystallization was allowed to proceed for 1 week. For the high-temperature crystallization, about 150 mg of KFCT was dissolved in 2 mL of water within a 4 mL vial. This vial was placed inside a 20 mL vial filled with 10 mL of ethanol and subsequently covered with aluminum foil. Both vials were then placed within a pressure bomb and placed in an oven set to 55 °C for 1 week.

The above crystallizations were repeated in which the solvent was either a 0.5 M KOH solution or 20% w/v K₂CrO₄ solution. When the latter solution was utilized, K₂CrO₄ tended to crystallize along with KFCT and proved to be a poor crystallization method. In summary, a total of five crystallization conditions were thus utilized: those obtained with ethanol precipitation at room temperature, ethanol precipitation at room temperature, and ethanol diffusion at 55 °C. These were performed with KFCT dissolved in distilled water and also in a 0.5 M KOH solution for a total of ten samples.

Solid-State NMR Spectroscopy: Methodology. The solids obtained from the above crystallization methods were placed directly into NMR rotors that were lightly tapped against a countertop to pack the crystallites inside the rotor. This is in contrast to the usual protocol whereby the sample is thoroughly ground using a mortar and pestle and then packed tightly into the NMR rotor using a packing tool. As a result of not grinding the KFCT crystals, several attempts were usually required to achieve stable sample spinning at the magic angle. After each unsuccessful attempt at spinning, the rotor was removed from the probe, additional sample was added, then tamped down, and the rotor was placed back in the probe. This was repeated until stable sample spinning was achieved.

For each sample, an initial ¹³C and ¹⁵N NMR spectrum was acquired at room temperature. Subsequently, the rotor was removed from the probe and placed into a Schlenk tube. The tube was then filled with nitrogen gas and, to alter the relative amounts of the tetragonal and monoclinic polymorphs in the sample, was cooled to -98 °C in a methanol/N₂(*l*) bath for a minimum of 3 h. The sample was warmed to room temperature over a period of several hours before the acquisition of the subsequent ¹³C NMR spectrum. Initial results demonstrated that the ¹⁵N NMR spectra were not sensitive to the crystallization conditions and only ¹³C NMR spectra were obtained from this point on. If changes were observed in the ¹³C NMR spectrum in comparison to the initial spectrum, the sample was cooled again and a new ¹³C NMR spectrum was acquired. This process was repeated until no further changes were observed in the ¹³C NMR spectra.

After the cooling and warming cycles were complete, the rotors were unpacked, the KFCT sample was ground using a mortar and pestle, and then packed tightly into the NMR rotor in the usual method of preparing a sample for solid-state NMR spectroscopy. A spectrum of the ground sample was acquired and subsequently the rotor was cooled in the methanol/N₂(*l*) bath for a minimum of 3 h, and new ¹³C NMR spectra were acquired. As a result of this methodology, a minimum of four ¹³C NMR spectra were acquired for each KFCT sample.

Solid-State NMR Spectroscopy: Experimental Details. For the MAS experiments, samples were packed into 7.0 mm o.d. or 4.0 mm

Polymorphism of Potassium Ferrocyanide Trihydrate

o.d. zirconium oxide rotors and 1H, 13C, and 15N experiments were performed at an applied magnetic field strength of 11.75 T on a Bruker Avance 500 spectrometer ($\nu_{\rm L}(^{1}\text{H}) = 500.3 \text{ MHz}, \nu_{\rm L}(^{13}\text{C}) = 125.8$ MHz, $v_{\rm L}(^{15}\text{N}) = 50.7$ MHz) using a Bruker double-resonance MAS probe. The ¹³C NMR spectra were referenced with respect to TMS, $\delta_{iso}(^{13}C) = 0.0$ ppm, by setting the high-frequency resonance of adamantane to 38.56 ppm. Nitrogen-15 NMR spectra were referenced with respect to liquid ammonia at 298 K, $\delta_{iso}(^{15}N) = 0.0$ ppm, by setting the ammonium resonance of ammonium nitrate to 23.80 ppm. All MAS experiments were performed using a simple Bloch-decay pulse sequence. For spectra acquired at or above room temperature, ¹H decoupling did not improve the ¹³C or ¹⁵N NMR spectra and thus was not utilized. Likely, ¹H decoupling was unnecessary because the water molecules in KFCT are known to be undergoing more than one type of rapid motion at room temperature,^{45,57-59} and the motion averages the ${}^{13}C-{}^{1}H$ dipolar coupling. At least one of these types of motions begins to slow as the temperature is cooled, and thus continuous-wave ¹H decoupling was necessary to maximize the resolution of ¹³C and ¹⁵N NMR spectra acquired below room temperature. Multiple spinning rates, ranging from 3.0 to 8.0 kHz, were used to isolate the isotropic ¹³C and ¹⁵N resonances. Spinning faster then 4.0 kHz with the 7.0 mm o.d. rotors or 8.0 kHz with the 4.0 mm o.d. rotors resulted in dehydration of the KFCT sample. For the variable-temperature experiments, temperatures were calibrated using the ²⁰⁷Pb NMR peak of lead nitrate.⁶⁴ All ¹³C MAS experiments were performed using a ¹³C pulse width of 2.0 μ s, ~40° flip angle, while ¹⁵N MAS experiments utilized a ¹⁵N pulse width of 2.0 μ s, ~36° tip angle. These reduced pulse widths correspond to $\pi/2$ ¹³C and ¹⁵N pulse widths of 5.0 and 5.5 μ s, respectively, and were required because of the exceedingly long 13C and 15N spin-lattice relaxation times that we estimated from recycle delay optimizations to be on the order of several minutes. Regardless, ¹³C NMR experiments still required recycle delays of 4 min (KFCT) and 8 min (anhydrous KFC). For room temperature spectra, between 16-304 scans were recorded and between 4-16 scans were acquired for the variable-temperature experiments. The ¹H NMR spectra required between 4-16 scans, which were collected using a 2.5 μ s $\pi/2$ pulse and a 10 s pulse delay.

Stationary sample ¹³C and ¹⁵N NMR experiments were performed as described above except a Hahn-echo pulse sequence⁶⁵ was used. Continuous-wave ¹H decoupling was applied after the initial excitation pulse and remained until acquisition of the FID was complete. The ¹³C NMR spectrum was a result of the summation of 1056 transients, while 140 transients were acquired for the ¹⁵N NMR spectrum. An additional ¹³C NMR spectrum was acquired at an applied magnetic field strength of 7.05 T on a Bruker Avance 300 (ν_L (¹³C) = 75.5 MHz) in the same manner as the experiments performed on the Bruker 500, but a total of 400 transients were acquired.

Parameters describing the anisotropic chemical shift tensor were determined from simulations of the MAS and stationary sample spectra using the program WSOLIDS, an analytical simulation program developed in our laboratory.⁶⁶ Since the ¹³C and ¹⁵N chemical shift tensors are axially symmetric, the tensor is described by the span, Ω , which is the difference between the perpendicular, δ_{\perp} , and parallel, δ_{\parallel} , components of the chemical shift tensor and the isotropic chemical shift, $\delta_{\rm iso} = (2\delta_{\perp} + \delta_{\parallel})/3$.

Powder X-ray Diffraction. Five KFCT samples were prepared for the powder X-ray diffraction experiments: precipitated from a water solution at room temperature and 55 °C, precipitated from a

Table 1. Crystallographic Data for the Potassium Ferrocyanide

 Compounds Included in This Study

1	2		
compound	KFCT	KFCT	KFC
chemical formula	C ₆ N ₆ FeH ₆ O ₃ K ₄	C ₆ N ₆ FeH ₆ O ₃ K ₄	C ₆ N ₆ FeK ₄
formula weight	422.42	422.42	368.37
T/°C	22	-80	22
crystal system	monoclinic	monoclinic	orthorhombic
space group (No.)	C2/c (No. 15)	Cc (No. 9)	Cmcm (No. 63)
a/Å	9.3790(10)	9.3528(13)	4.18
b/Å	16.8444(18)	16.755(2)	14.01
c/Å	9.3919(10)	9.3591(13)	21.04
β /deg.	90.0691(18)	90.076(2)	90
V/Å ³	1483.8(3)	1466.7(4)	
Ζ	4	4	
$D_{\rm calcd}/{\rm g \ cm^{-3}}$	1.891	1.913	
λ/Å	0.71073	0.71073	
μ/cm^{-1}	2.151	2.176	
$R_1 [F_0^2 \ge 2\sigma(F_0^2)]^a$	0.0308	0.0275	
$wR_2 [F_o^2 \ge -3\sigma (F_o^2)]^b$	0.0811	0.0722	
${}^{a}R_{1}=\sum F_{o} - F_{c} $	$\sum F_{\rm o} \cdot {}^b w R_2 =$	$[\sum w(F_{\rm o}^2 - F_{\rm c}^2)^2]$	$\sum w(F_{o}^{4})]^{1/2}.$

0.5 M KOH solution at room temperature and 55 °C, and a crystalline sample that was ground in a mortar. In addition, diffraction data were also acquired for the anhydrous KFC sample that was prepared. The diffraction experiments were performed at room temperature on an Inel powder diffractometer using Cu K α radiation.

Single-Crystal X-ray Crystallography. A small amount of a commercial sample of KFCT (20 mg, 0.047 mmol) was placed in a 2-dram vial and dissolved in 2.5 mL of distilled water. Ethanol, 95%, was allowed to slowly evaporate into the solution until small crystals were visible (5 days). Diffraction data were collected at 22 and -80 °C on a Bruker PLATFORM/SMART 1000 CCD diffractometer using graphite-monochromated Mo Ka radiation utilizing ω scans (0.3°, 20 s exposures). A multiscan (SADABS) absorption correction was applied to the data before refinement. The structures were solved with direct methods using Sheldrick's SHELXS-86⁶⁷ and least-squares refinement on F^2 was performed with Sheldrick's SHELXL-93.68 Hydrogen atom positions were derived from heavy-atom coordinates and included during the refinement. The -80 °C structure was found to be a racemic twin, which was accommodated during the refinement using the SHELXL-93 TWIN instruction,⁶⁸ yielding a Flack parameter⁶⁹⁻⁷¹ of 0.44(2). At room temperature one of the water molecules (O2) was found to be disordered and was refined using an occupancy factor of 0.5. Crystallographic parameters for both structures are summarized in Table 1, select bond lengths and angles in Table 2, atom numbering in Figure 1, and unit cells in Supporting Information, Figure S1.

A crystal of anhydrous KFC was isolated from the hightemperature slow-diffusion crystallization of an aqueous solution of KFCT as described in Crystallization Methods portion of this section. The anhydrous KFC crystals formed needles that could easily be separated from the KFCT crystals that formed blocks. Unit cell parameters for anhydrous KFC were obtained at room temperature in the same manner as described for KFCT and are presented in Table 1. The crystal of anhydrous KFC was not of suitable quality for complete refinement, and such a crystal could not be obtained after several attempts.

- (68) Sheldrick, G. M. SHELXL-93, Program for Crystal Structure Determination; Bruker AXS Inc.: Madison, WI, 1993.
- (69) Flack, H. D. Acta Crystallogr., Sect. A: Found. Crysallogr. 1983, 39, 876–881.
- (70) Flack, H. D.; Bernardinelli, G. Acta Crystallogr., Sect. A: Found. Crystallogr. 1999, 55, 908–915.
- (71) Flack, H. D.; Bernardinelli, G. J. Appl. Crystallogr. 2000, 33, 1143– 1148.

⁽⁶⁴⁾ van Gorkom, L. C. M.; Hook, J. M.; Logan, M. B.; Hanna, J. V.; Wasylishen, R. E. Magn. Reson. Chem. 1995, 33, 791–795.

⁽⁶⁵⁾ Rance, M.; Byrd, R. A. J. Magn. Reson. 1983, 52, 221–240.
(66) Eichele, K.; Wasylishen, R. E. NMR Simulation Package, 2001.

⁽⁶⁷⁾ Sheldrick, G. M. Acta Crystallogr., Sect. A: Found. Crystallogr. 1990, 46, 467–473.

Table 2. Select Bond Lengths (Å) and Angles (deg) for KFCT above and below the Curie Temperature

KFCT at 22 °C								
Fe-C1	1.916(2)	C1-N1	1.162(3)	N1-K2	2.846(2)	N1-O2	2.977(5)	
Fe-C2	1.917(2)	C2-N2	1.159(3)	N2-K1	2.835(2)	N2-O1	3.229(4)	
Fe-C3	1.921(4)	C3-N3	1.156(5)	N3-K1	3.011(3)	N3-O1	3.170(3)	
Fe-C4	1.942(4)	C4-N4	1.100(4)	N4-K2	3.0588(6)	N4-O2	2.901(5)	
C1-Fe-C4	90.09(7)	C2-Fe-C4	89.95(7)	C3-Fe-C4	180			
			KFCT at -80) °C				
Fe-C1	1.922(4)	C1-N1	1.167(6)	N1-K3	2.859(5)	N1-O3	3.036(4)	
Fe-C2	1.926(4)	C2-N2	1.144(6)	N2-K4	2.838(5)	N2-O1	3.267(4)	
Fe-C3	1.944(3)	C3-N3	1.098(4)	N3-K4	3.047(6)	N3-O3	2.895(4)	
Fe-C4	1.914(4)	C4-N4	1.166(6)	N4-K1	2.832(5)	N4-O2	3.061(5)	
Fe-C5	1.909(4)	C5-N5	1.180(6)	N5-K2	2.804(5)	N5-O2	3.176(5)	
Fe-C6	1.914(3)	C6-N6	1.164(4)	N6-K4	3.014(3)	N6-O1	3.056(6)	
C1-Fe-C3	88.5(2)	C2-Fe-C3	89.4(2)	C4-Fe-C3	91.7(2)			
C5-Fe-C3	90.4(2)	C6-Fe-C3	178.2(2)					

Results and Discussion

Single-Crystal X-ray Diffraction. Although a full refinement of the monoclinic C2/c KFCT structure has been reported in the literature using both X-ray⁴⁵ and neutron diffraction,⁴¹ the most recent study is nearly 40 years old and considering the advancement of crystallography methods and equipment over the past few decades, we have reinvestigated the structure at room temperature. In addition, for

Figure 1. Perspective plot of KFCT at (A) 22 °C and (B) -80 °C. Included are the water molecules and potassium ions nearest to each nitrogen atom. The O2-containing water molecules at 22 °C are disordered, and heavy atoms are drawn with 50% probability ellipsoids.

the first time we have refined the structure of KFCT at lowtemperature (vide infra). The major features of our room temperature structure (see Figure 1A, Table 1, Table 2, Supporting Information, Figure S1A) are in agreement with the structures reported earlier, although improvements in the precision of the atomic positions, bond lengths, and bond angles have been obtained. The ferrocyanide anions, which are slightly distorted octahedra, are in close proximity to two layers of potassium cations, the whole of which is separated by a layer of water molecules. There are two nonequivalent water molecules in the structure, one of which (O2) is disordered about N4 via the 2-fold rotation axis of the crystal. The neutron diffraction study demonstrated that both crystallographically nonequivalent water molecules are disordered.⁴¹ The inability of X-ray diffraction to determine the disorder in the O1-containing water molecule lies in the fact that the oxygen atom is displaced by a small distance; it is the positions of the hydrogen atoms that are disordered.⁴¹ The small oxygen displacement is accounted for in our X-ray structure by the rather large thermal parameter on O1.

Below the transition temperature, a complete refinement of the structure has not previously been performed, although the space group has been reported to be Cc.^{44,45} The authors noted that little difference was expected in the positions of the heavy atoms at low temperature, regardless of the phase change and the loss of a symmetry center within the crystal.

Indeed, at -80 °C we observed only minor changes to the positions of the ferrocyanide anion atoms and potassium ions in comparison to the room-temperature structure; the major difference being that all six carbon and nitrogen atoms within the same ferrocyanide anion are crystallographically nonequivalent at -80 °C (see Figure 1B, Table 1, Table 2, Supporting Information, Figure S1B). Furthermore there are three nonequivalent water molecules with no positional disorder; the water molecule containing O3 resides in one of the two positions that was occupied by O2 at room temperature. The ¹H and ²H NMR spectra acquired at -80°C indicate that while the translational motion has ceased and the positions of the oxygen atoms are thus fixed, the water molecules are still undergoing flips about the water molecule's C_2 -axis such that the hydrogen atom positions remain disordered. 45,57,58

Figure 2. (A) ¹H, (B) ¹⁵N, and (C) ¹³C MAS NMR spectra of a ground sample of KFCT acquired with $v_{rot} = 4.0$ kHz. For the ¹³C and ¹⁵N spectra, the lower traces represent the experimental NMR spectra, while the upper traces represent simulated NMR spectra. Simulation parameters are presented in Table 3. The insets in (B) and (C) are expansions of the isotropic regions of each spectrum.

The unit cell parameters determined for anhydrous KFC indicate that the room-temperature structure of KFCT changes dramatically upon dehydration, changing from monoclinic C2/c to orthorhombic *Cmcm*. The ¹³C and ¹⁵N NMR spectra presented in the following section are also sensitive to the structure change upon dehydration.

Solid-State ¹**H**, ¹³**C**, and ¹⁵**N NMR Spectroscopy of a Ground Sample of KFCT.** The initial sample of KFCT studied by multinuclear solid-state NMR spectroscopy was prepared by crystallizing KFCT at room temperature by ethanol diffusion into a solution of KFCT in distilled water. Using the standard protocol for preparing solid-state NMR samples, the KFCT crystals were ground thoroughly using a mortar and pestle and packed tightly into an NMR rotor. The ¹H, ¹³C, and ¹⁵N NMR spectra subsequently obtained are presented in Figure 2.

Table 3. Carbon-13 and Nitrogen-15 NMR Parameters for a GroundSample of Potassium Ferrocyanide Trihydrate (KFCT) and AnhydrousPotassium Ferrocyanide (KFC) at Room Temperature^a

			$\delta_{ m iso}$ of site/ppm				
compound	nucleus	1	2	3	4	5	6
KFCT ^b KFC ^c KFCT ^d KFC ^e	¹³ C ¹³ C ¹⁵ N ¹⁵ N	176.9 181.0 302.2 304.4	175.4 177.8 302.2 304.1	173.0 176.7 300.9 303.2	172.3 170.5 300.9 297.7	171.7 169.7 297.8 297.4	171.0 165.8 289.5 291.9

 a Skew of the CS tensor is assumed to be +1.0 and the uncertainty in δ_{iso} is \pm 0.1 ppm in all cases. b Span of the CS tensor is 360(5) ppm for all sites as derived from stationary sample spectra (see Supporting Information, Figure 2). The $R_{eff}(^{15}N,^{13}C)$ was determined to be -1850(50) Hz. c Span of the CS tensor is 365(10) ppm for all sites as derived from an analysis of the spinning sideband manifold. d Span of the CS tensor is 530(10) ppm for all sites as derived from stationary sample spectra (see Supporting Information, Figure 2). e Span of the CS tensor is 530(10) ppm for all sites as derived from an analysis of the spinning sideband manifold.

The ¹H NMR spectrum has a very small spinning sideband manifold, which indicates that the water molecules are undergoing several types of motion. If no motion was present, the ¹H spectrum would take the shape of the classic "Pake" doublet⁷² because of the ¹H–¹H homonuclear dipolar coupling (splitting \approx 46 kHz) that is slightly distorted by the ¹H chemical shift anisotropy, CSA.^{73,74} Clearly, the water dynamics essentially average these two interactions, giving rise to the spectrum presented in Figure 2.

As expected, the CN ligands give rise to a large CSA that dominates the ¹³C and ¹⁵N NMR spectra and results in numerous spinning sidebands under MAS. Parameters describing the CSA have been determined from simulations of the MAS spectra presented in Figure 2 and stationary sample spectra presented in Supporting Information, Figure S2; simulation parameters are given in Table 3.

An expansion of the isotropic regions of the ¹³C and ¹⁵N MAS NMR spectra are presented as insets to Figure 2. Note that the isotropic region has the same appearance if the spinning sidebands are summed into the isotropic region. Based upon the monoclinic crystal structure at room temperature, in which there are four crystallographically and magnetically nonequivalent cyanide ligands, it was expected that the ¹³C and ¹⁵N MAS NMR spectra would have four unique isotropic sites. The isotropic region of the ¹⁵N NMR spectrum (inset of Figure 2B) is consistent with the crystal structure having four peaks with relative areas of 2:2:1:1; the two high-frequency ¹⁵N NMR peaks result from the four equatorial sites. The ¹³C spectrum, on the other hand, has six distinct isotropic peaks, each having nearly the same relative area (inset of Figure 2C), suggesting that all six carbon atoms in the ferrocyanide anion are nonequivalent. Such a spectrum is not consistent with the monoclinic C2/cform discussed above, nor with the known tetragonal form. Rather, the ¹³C spectrum suggests the presence of a new room-temperature form of KFCT.

To shed some light on the unexpected ¹³C NMR results, a series of experiments were performed. First, solution NMR

⁽⁷²⁾ Pake, G. E. J. Chem. Phys. 1948, 16, 327-336.

⁽⁷³⁾ Tekely, P.; Palmas, P.; Mutzenhardt, P. J. Magn. Reson. 1997, 127, 238–240.

⁽⁷⁴⁾ Riemer, T.; Schmidt, B.; Behrens, H.; Dupree, R. Solid State Nucl. Magn. Reson. 2000, 15, 201–207.

Figure 3. Experimental (lower traces) and simulated (upper traces) (A) ¹⁵N and (B) ¹³C MAS NMR spectra of anhydrous KFC acquired with $\nu_{rot} = 4.0$ kHz. (Insets) Expansions of the isotropic region of each spectrum. Simulation parameters are presented in Table 3.

and IR spectroscopy have been used to verify that no impurities were present. Additional solid-state NMR experiments, performed on additional samples of KFCT containing different amounts of isotropic ¹³C-¹⁵N labeling, demonstrated that no spin-spin coupling interactions can account for the additional peaks in the ¹³C NMR spectrum. The additional peaks in the ¹³C NMR spectrum must then occur from some solid-state effect, namely polymorphism or a different hydrate of KFCT. For the latter case, no hydrates greater than the trihydrate have been reported in the literature; a monohydrate form has been suggested,^{43,75} and a stable anhydrous form is known but has not been previously characterized.76,77 Thermal Gravimetric Analysis, TGA, indicates that the KFCT sample studied indeed consists of three water molecules per ferrocyanide anion; there are no other stable hydrates of KFC and complete dehydration is achieved when heated over 85 °C. The ¹³C and ¹⁵N NMR spectra of anhydrous KFC are shown in Figure 3. While there are no significant changes to the CSA parameters (see Table

Figure 4. Isotropic regions of (A) ¹³C and (B) ¹⁵N MAS NMR spectra of KFCT acquired at elevated temperatures. For each spectrum, the spinning sidebands have been summed into the isotropic region, and the peaks corresponding to anhydrous KFC have been marked with dotted lines.

3), the isotropic regions of the ¹³C and ¹⁵N NMR spectra of anhydrous KFC differ from those of KFCT. Comparison of the isotropic ¹³C chemical shifts between KFCT and anhydrous KFC (see Table 3) clearly demonstrates that the anhydrous form of KFC is not responsible for any of the six peaks observed in the ¹³C MAS NMR spectrum of ground KFCT (see Figure 2).

Last, to ensure that additional hydrates of KFC are not responsible for the additional ¹³C peaks in Figure 2, variabletemperature ¹³C and ¹⁵N experiments were performed up to 85 °C and are presented in Figure 4. At 37 °C, additional peaks at around 181, 178, 170, and 166 ppm begin to appear in the ¹³C NMR spectrum, although no additional peaks are evident in the ¹⁵N NMR spectrum at this temperature. At 60 °C, these additional peaks in the ¹³C NMR spectrum grow in intensity and some broadening of the two low-frequency ¹⁵N peaks occurs. At 85 °C, the intensities of the additional peaks are significant in both the ¹³C and ¹⁵N NMR spectra. The chemical shifts of these peaks correspond exactly to those found in the anhydrous KFC sample, and the absence of any other peaks demonstrates that no intermediate hydrates of KFC are formed upon heating.

Solid-State ¹³C and ¹⁵N NMR Spectroscopy of Unground Samples of KFCT. On the basis of the discussion presented in the previous section, the additional peaks in the room-temperature ¹³C NMR spectrum of KFCT (see Figure 2) must be due to polymorphism. To determine if polymorphism can account for the additional peaks in the ¹³C NMR room-temperature spectrum, we crystallized KFCT under ten crystallization conditions as described in the Experimental Section. These samples, however, were not subject to grinding before acquisition of the ¹³C and ¹⁵N NMR spectra. Regardless of the crystallization method utilized, the relative intensities and chemical shifts of the four isotropic peaks in the ¹⁵N MAS NMR spectra obtained are the same as the ¹⁵N NMR spectrum of the ground sample (see Figure 2). The isotropic region of the ¹³C NMR spectra are shown in Figure 5, with the crystallization rate of the samples increasing from left to right. These spectra are sensitive to the crystallization method used, specifically the relative intensities of the four

⁽⁷⁵⁾ Massidda, V.; Anda, E. Ferroelectrics 1981, 34, 187-192.

⁽⁷⁶⁾ Oguni, M.; Matsuo, T.; Suga, H.; Seki, S. Bull. Chem. Soc. Jpn. 1975, 48, 379–391.

⁽⁷⁷⁾ Malcolm, I. R.; Staveley, L. A.; Worswick, R. D. J. Chem. Soc., Faraday Trans. 1973, 1532–1540.

Polymorphism of Potassium Ferrocyanide Trihydrate

Figure 5. Isotropic region of the ¹³C MAS NMR spectra of a variety of KFCT samples, with each KFCT sample crystallized under the conditions described in the text. The samples in the top row were crystallized from distilled water while the samples in the bottom row were crystallized from a 0.5 M KOH solution. For each spectrum, the spinning sidebands have been summed into the isotropic region.

low-frequency peaks varied depending on how the crystals were formed. In all cases, however, the relative areas of the two high-frequency peaks compared to the sum of the four low-frequency peaks are 1:1:4, and the chemical shifts of the six peaks do not differ between the samples. For the remainder of this paper, the relative areas of the four lowfrequency peaks will be expressed so the total area of the four peaks is normalized to four.

In the four samples prepared at room temperature (by ethanol precipitation and ethanol diffusion, first and second column of Figure 5), the two outer ¹³C NMR peaks of the low-frequency "quartet" are low in intensity relative to the two inner peaks. In the samples prepared by ethanol precipitation, the relative integrated areas of the four peaks is approximately 0.4:1.6:1.6:0.4. A slight decrease in the relative intensities of the outer peaks relative to those of the inner peaks is observed for the crystall prepared by ethanol diffusion. Regardless, for both crystallization methods at room temperature the inclusion of KOH has little effect on the ¹³C NMR spectrum obtained.

When slow-cooling to room temperature was utilized (middle column of Figure 5), the relative intensities of the outer two peaks were found to increase in comparison to the KFCT samples prepared at 20 °C. The increase observed is only slight for the sample prepared from a water solution, but is significant for the KOH sample. For the latter sample, the intensities of the four peaks are nearly equal, and the relative integrated areas are 0.9:1.1:1.1:0.9.

From the four samples prepared at 55 °C, three distinct ¹³C NMR spectra were obtained. First, the spectrum obtained for the sample prepared by ethanol precipitation from a water solution (Figure 5, top row, second column from the right) appears to be the same as the spectrum obtained for the four samples that were prepared at room temperature. When the sample was precipitated from a KOH solution (Figure 5, bottom row, second column from the right), anhydrous KFC was formed (compare this spectrum to that of Figure 3). When ethanol diffusion was utilized, there is no major difference in the composition of the KFCT sample obtained

whether or not KOH was used. For these samples, the intensities of the outer peaks of the low-frequency quartet are much larger than those of the inner peaks, with the relative areas of the peaks being 1.4:0.6:0.6:1.4.

In general, the ¹³C NMR spectra presented in Figure 5 demonstrates that the crystallization rate and solution composition have little influence on the KFCT sample obtained at room temperature, but these factors become important at elevated temperatures. The changes to the sample composition are reflected by variations in the relative intensities of the low-frequency quartet of the ¹³C NMR spectra. The reason why the intensities of the ¹³C NMR peaks are altered depending on the crystallization temperature can be inferred from what is known from the various crystallography studies that have been performed on KFCT. As described earlier, the most common form of KFCT is a monoclinic form, although a tetragonal form has been reported. From a bulk crystallization, a pure form of KFCT is never obtained but the relative amounts of the various forms can be manipulated by altering the crystallization conditions.42,44 At elevated temperatures, the tetragonal form is preferred, whereas at room temperature the monoclinic C2/c form is preferred.⁴² Taken with the ¹³C NMR spectra presented in Figure 5, we believe that the spectra obtained are a convolution of two individual ¹³C NMR spectra, one resulting from the monoclinic form and another from the tetragonal form. Each individual spectrum consists of four peaks with the relative integrated areas of 1:1:2:2, and the chemical shifts of the two high-frequency peaks are the same for both polymorphs. The only difference are the chemical shifts of the two lowfrequency peaks; the monoclinic form, which is dominant at room temperature, giving rise to the inner peaks in the low-frequency quartet, and the tetragonal form, which is dominant at elevated temperatures, giving rise to the outer peaks of the low-frequency quartet. The different ¹³C NMR spectra obtained therefore result from different relative amounts of each polymorph.

Figure 6. Deconvolutions of the isotropic region of the ¹³C MAS NMR spectra of a KFCT sample obtained from ethanol diffusion into a 0.5 M KOH solution of KFCT at room temperature (left column), and a sample obtained in the same manner at 55 °C (right column). The monoclinic (*C2/c*) form comprises 90% of the former sample and 20% of the latter sample.

To demonstrate how the experimental ¹³C MAS NMR spectra can be composed of two polymorphs, theoretical spectra have been constructed for each polymorph using the chemical shifts of the peaks presented in Table 2, fitting the theoretical linewidths to the experimental linewidths, and then adjusting the intensities to ensure that the relative areas of the four peaks were exactly equal to 1:1:2:2. Note that the chemical shifts of the two high-frequency peaks are the same for both polymorphs. The spectra were then summed using different weighted amounts of each polymorph. In Figure 6, the individual theoretical spectra are presented and summed to simulate the ¹³C NMR spectra obtained for the two crystallization conditions that produced the greatest relative amount of each polymorph; ethanol diffusion at room temperature for the monoclinic C2/cpolymorph (upper left spectrum of Figure 6) and ethanol diffusion at 55 °C for the tetragonal polymorph (upper right spectrum of Figure 6). Simulations of the experimental spectra were obtained by adding the spectra arising from different weighted amounts of each polymorph. Using this procedure, we have found that the room-temperature sample spectrum is composed of about 90% of the monoclinic polymorph, while this polymorph comprises only about 20% of the hightemperature sample.

As mentioned earlier, the same ¹⁵N NMR spectrum is obtained regardless of the crystallization condition, and it appears as though ¹⁵N NMR is insensitive to the polymorphism. Given that ¹³C has a smaller chemical shift range than ¹⁵N, it was expected that the ¹⁵N NMR spectra would actually be more sensitive to the polymorphism than the ¹³C NMR spectra. It appears that the ¹⁵N peaks of the two different polymorphs fortuitously overlap such that the same overall ¹⁵N NMR spectrum is obtained regardless of the relative amounts of each polymorph.

Figure 7. Isotropic region of room-temperature ¹³C MAS NMR spectra of three different samples of KFCT acquired at room temperature before and after cooling down to -98 °C. For each spectrum, the spinning sidebands have been summed into the isotropic region.

Effects of Cooling on the ¹³C NMR Spectra of the Crystalline Samples. To further verify that the crystallized sample contains a mixture of the monoclinic and tetragonal polymorphs, after the initial ¹³C NMR spectra were acquired (see Figure 5), the samples were cooled to -98 °C, warmed to room temperature, and then new ¹³C NMR spectra were acquired. According to literature reports, the tetragonal polymorph converts irreversibly to the monoclinic Cc polymorph upon cooling below about -60 °C.^{44,60,76,78} Warming the Cc polymorph above the Curie temperature of -25 °C leads to the C2/c structure. If the outer peaks in the ¹³C NMR spectra belong to the tetragonal polymorph, then after a cooling/warming cycle the intensities of these peaks in the room-temperature ¹³C MAS NMR spectrum should decrease relative to the inner peaks that we have assigned to the monoclinic C2/c polymorph. In general, this is exactly what was observed in all cases, and the results for three crystal samples are shown in Figure 7. These samples represent the crystallization condition with the least amount of the tetragonal polymorph (top row: ethanol diffusion at room temperature, KOH solution), the condition that produced a roughly equal amount of each polymorph (middle row: slowcooling from 55 °C to room temperature, KOH solution), and the condition that produced the greatest amount of the tetragonal polymorph (bottom row: ethanol diffusion, 55 °C, KOH solution). On the left-hand column of Figure 7, the original ¹³C NMR spectra are shown and on the right-hand column, the room-temperature ¹³C NMR spectra acquired after a cooling/warming cycle are presented. For the first sample, there is no appreciable change to the ¹³C NMR spectrum after cooling, consistent with the initial sample containing primarily the monoclinic polymorph. For the second sample, which has about an even amount of each polymorph, there is a considerable decrease in the intensities of the outer peaks after cooling, although a significant amount

⁽⁷⁸⁾ Krasnikova, A. Ya.; Koptsik, V. A.; Strukov, B. A.; Ming, W. Sov. Phys. Solid State (Engl. Transl.) 1967, 9, 85–89.

Figure 8. Isotropic region of the ¹³C MAS NMR spectra of KFCT upon cooling to -120 °C (left column, down) and subsequently warming back to 20 °C (right column, up). The numbers indicate the order in which the spectra were acquired. For each spectrum, the spinning sidebands have been summed into the isotropic region. The sample of KFCT was obtained from a crystallization in which ethanol slowly diffused into a water solution of KFCT at 55 °C.

of the tetragonal polymorph still remains. From a deconvolution of the spectrum obtained after cooling, the tetragonal polymorph still comprises about 25% of the sample. Last, for the high-temperature sample, again a decrease in the intensities of the outer peaks relative to those of the inner peaks was observed; the resulting ¹³C NMR spectrum obtained is the same for this sample as the previous sample.

To further examine the effects of cooling we performed a series of low-temperature experiments on a freshly crystallized high-temperature sample. C-13 NMR spectra were obtained every 20 °C when cooling the sample from 20 to -120 °C, which is the lowest stable temperature that can safely be achieved with the NMR probe utilized, and upon warming back to room temperature. The spectra obtained are shown in Figure 8. As the temperature decreases, five of the six peaks move to lower frequency, while the peak that has a shift of 175.4 ppm at room temperature moves to higher frequency. This carbon site is also the most sensitive to the changes in temperature. At -60 °C, we expected to observe a change to the monoclinic *Cc* form, whereas in reality the only major change is that there are now five ¹³C peaks, as the temperature-sensitive peak described above has merged with its neighboring peak. At -80 °C, this peak is to the high-frequency of its neighboring peak, with a shift of 176.9 ppm. At this temperature, several new peaks appear in the ¹³C NMR spectrum, having chemical shifts of approximately 178, 175, and 170 ppm.

Upon further cooling, the intensities of the ¹³C peaks arising from the initial KFCT sample continue to decrease while the new peaks continue to increase and at -120 °C, there are six main peaks in the ¹³C NMR spectrum, with shifts of 179.6, 175.9, 175.7, 172.1, 169.5, and 169.2 ppm. Likely these peaks are due to the *Cc* monoclinic structure that we presented earlier where the six cyanide ligands are nonequivalent and thus should give rise to six ¹³C NMR peaks. Such a transition from the tetragonal structure to the low-temperature monoclinic structure has been reported in the literature and is irreversible.^{44,60,76,78}

Upon warming, the ¹³C NMR spectra, with the exception of the spectra at -100 °C, differ from those obtained on cooling. Of particular interest are the spectra obtained at -60°C. During cooling, there are six peaks belonging to the *C2/c* and tetragonal forms of KFCT. During warming, the ¹³C NMR spectra clearly indicate that an additional phase of KFCT is present. Not until 0 °C (spectrum not shown) are the peaks arising from this additional phase absent from the ¹³C NMR spectrum. The phase transition observed upon warming is that of the *Cc* structure to the *C2/c* structure; this transition has been documented to occur at -25°C.^{44,46,48,49,63,76-80}

At room temperature, the ¹³C NMR spectrum obtained after the cooling and heating cycle differs significantly from the initial spectrum obtained. As shown earlier, the relative amount of the two polymorphs has changed in such a way that more of the monoclinic C2/c polymorph is present, although some tetragonal polymorph does remain. The fact that some of the tetragonal form remains after cooling has not been previously reported in the literature. In all previous studies the tetragonal polymorph was apparently removed upon cooling. Such studies, however, have focused on a single-crystal only, whereas we are studying a bulk sample that contains different polymorphs, crystallites of which range in size from powders to crystals of several millimeters. One possibility is that a minority of the bulk sample is composed of powders for which the phase-change from monoclinic to tetragonal does not occur. We have examined the effects of grinding to gain further insight into this possibility.

Effects of Grinding on the ¹³C NMR Spectra of the Crystalline Samples. After cooling, the samples were unpacked, ground using a mortar and pestle, and repacked tightly into the NMR rotors. For all but the precipitated samples, the ¹³C NMR spectra of the ground samples are essentially the same as presented in Figure 2. Specifically

⁽⁷⁹⁾ Krasnikova, A. Ya.; Polandov, I. N. Sov. Phys. Solid State (Engl. Transl.) 1970, 11, 1421–1424.

⁽⁸⁰⁾ Nakagawa, T.; Kawakubo, T.; Sawada, S.; Nomura, S. J. Phys. Soc. Jpn. **1963**, 18, 1227–1228.

the isotropic regions of the spectra contain six 13 C peaks of roughly equal integrated intensity. For the precipitated samples, grinding did result in an increase in the intensity of the outer peaks of the isotropic region, but the integrated areas of the four peaks were about 0.7:1.3:1.3:0.7.

Although there have been a few instances in which grinding samples has been shown to influence the solid-state NMR spectrum obtained,⁸¹⁻⁸⁵ such reports are rare. The phase transitions arise from heating that arises from the friction between mortar, pestle, and sample,⁸⁴ from the mechanical stress that is placed on the sample,^{81,82} or from both simultaneously.⁸³ For KFCT, no solid-solid phase transitions above room temperature have been reported in the literature, nor is there any evidence of such a transition from the ¹³C NMR spectra obtained above room temperature (see Figure 4). Thus the changes to KFCT from grinding must arise solely from the stress placed upon the sample. But what changes are induced in KFCT by grinding? First, recall that we concluded earlier that there are no stable forms of KFC other than the trihydrate and anhydrous forms. Therefore any loss of water because of heating that is caused by grinding results in small amounts of anhydrous KFC. Indeed in some ¹³C NMR spectra of ground samples of KFCT, peaks arising from the anhydrous form are present in small amounts. The presence of anhydrous KFC is so slight that TGA of ground samples is consistent with the trihydrate form. Therefore, there are two likely possibilities: the grinding is producing an even distribution of the two polymorphs, or, as mentioned earlier, the grinding is resulting in a polymorph, yet to be reported in the literature, in which none of the cyanide ligands are related by symmetry. Although having an even amount of each polymorph seems unlikely, crystallizations of poly(Lalanine) have been shown to result in a near equal amount of a beta-pleated sheet and α -helix conformations.⁸¹ For KFCT, there is no obvious thermodynamic reason why either of the two polymorphs would be favored and it is possible that a ground sample contains an equal amount of each polymorph. However, on the basis of the ¹³C NMR results alone, the existence of an as yet uncharacterized polymorph can not be ruled out. We have utilized powder X-ray diffraction to shed further light on this situation.

Powder X-ray Diffraction Results. To characterize the various KFC forms, we have performed powder X-ray diffraction experiments on several samples. Since we are limited to powder forms of KFCT, only samples of KFCT that have been produced by precipitation or grinding can be compared to the theoretical diffraction pattern generated from the monoclinic polymorph. In addition, the anhydrous form has been studied. The diffraction patterns are presented in Figure 9. In comparison to the theoretical pattern, the pattern

for the precipitated sample contains few peaks whose positions match those of the theoretical pattern. Even though the particles for the precipitated sample are small, likely the lack of grinding has resulted in some form of preferential alignment of the crystals and the poor distribution of crystallite orientations results in the lack of peaks in the diffraction pattern. Upon grinding, there is a considerable increase in the number of peaks appearing in the diffraction pattern. While the diffraction pattern matches the theoretical pattern well, there are some additional peaks that do not appear in the theoretical pattern. The most intense of these peaks appear at 2θ angles of approximately 25° , 30° , 31.5° , and 32.5°; however, these peaks can be found in the experimental diffraction pattern of the anhydrous sample. This is consistent with the NMR data that indicated that some of the anhydrous sample is produced upon grinding the KFCT sample.

Since all peaks in the diffraction pattern of the ground sample of KFCT can be matched to peaks in the theoretical pattern of the monoclinic polymorph and the experimental pattern of anhydrous KFC, there is no evidence of a new polymorph upon grinding. By corollary, there is also no evidence from the X-ray diffraction study that any of the tetragonal polymorph is present. However, we know from the ¹³C and ¹⁵N NMR spectra and the similarity of the unit cell parameters that the structure of the two polymorphs are so similar that it is possible that a powder X-ray diffraction pattern is not able to distinguish between the monoclinic and tetragonal forms.

Conclusions

Potassium ferrocyanide trihydrate has been studied by ¹³C and ¹⁵N solid-state NMR spectroscopy and X-ray diffraction. The ¹⁵N NMR spectra have four peaks with relative integrated areas of 2:2:1:1; a result that appears to be fortuitously consistent with the crystal structure at room temperature. The ¹³C NMR spectra, however, consist of six peaks, two high-frequency and four low-frequency peaks with similar chemical shifts. The relative intensities of the four low-frequency peaks change depending on the crystallization conditions, by cooling and by grinding. Of the crystallization conditions studied, the temperature at which the crystals are formed has the greatest effect on the highresolution ¹³C NMR spectra. At room temperature, the intensities of the inner peaks in the low-frequency set are much greater than the intensities of the outer peaks; at elevated temperatures the relative intensities of the four peaks are reversed.

The disagreement between the ¹³C NMR results and the crystal structure has been shown to arise from polymorphism between the monoclinic C2/c structure and a previously reported tetragonal structure. From crystallizations at room temperature, the monoclinic form is favored, giving rise to a ¹³C NMR spectrum in which the inner peaks of the low-frequency set of peaks are the most intense whereas at elevated temperatures, the tetragonal form is favored and the outer peaks are the most intense in the ¹³C NMR spectrum. Cooling to -98 °C converts most of the tetragonal form to

⁽⁸¹⁾ Wildman, K. A. H.; Lee, D. K.; Ramamoorthy, A. *Biopolymers* 2002, 64, 246–254.

⁽⁸²⁾ Wildman, K. A. H.; Wilson, E. E.; Lee, D. K.; Ramamoorthy, A. Solid State Nucl. Magn. Reson. 2003, 24, 94–109.

⁽⁸³⁾ Yada, S.; Ohya, M.; Ohuchi, Y.; Hamaura, T.; Wakiyama, N.; Usui, F.; Kusai, A.; Yamamoto, K. *Int. J. Pharm.* **2003**, 255, 69–79.

⁽⁸⁴⁾ Oh, S. W.; Bernard, G. M.; Wasylishen, R. E.; McDonald, R.; Ferguson, M. J. Can. J. Chem. 2005, 83, 1721–1730.

⁽⁸⁵⁾ Bowmaker, G. A.; Hanna, J. V.; Hart, R. D.; Skelton, B. W.; White, A. H. Dalton Trans. 2008, 5290–5292.

Figure 9. (A) Theoretical powder X-ray diffraction pattern of the room-temperature monoclinic (C2/c) form of KFCT as generated from the single-crystal X-ray diffraction data. Experimental powder X-ray diffraction patterns of (B) a sample of KFCT prepared by precipitating KFCT from a water solution at room temperature with ethanol, (C) a powder sample of KFCT prepared by grinding a crystalline sample of KFCT, and (D) a powder sample of anhydrous KFC.

the monoclinic form and after warming to room temperature, the intensities of the outer ¹³C NMR peaks are reduced relative to those of the inner peaks. Low-temperature ¹³C NMR experiments demonstrate that this conversion begins below -60 °C; however, this phase change is to a wellknown low-temperature *Cc* phase of KFCT in which six cyanide ligands are crystallographically nonequivalent. Upon warming back to room temperature, the phase change occurs around -40 °C and the sample consists mostly of the *C2/c* form.

The relative intensities of peaks in the ¹³C NMR spectra of KFCT are also sensitive to grinding. After grinding using a mortar and pestle, the relative integrated areas of the six peaks are approximately equal. Variable temperature ¹³C NMR experiments performed on a ground sample of KFCT have demonstrated that additional peaks are present upon heating and such peaks arise from the formation of anhydrous KFC; no hydrates of KFC aside from the trihydrate are formed. In addition, powder X-ray diffraction experiments do not suggest the formation of an unknown polymorph of KFCT upon grinding but rather that grinding results in a near equal amount of the monoclinic and tetragonal polymorphs. In summary, the results presented here illustrate the extreme sensitivity of high-resolution solid-state ¹³C NMR spectroscopy to subtle changes in crystal structure. From this study and previous research,^{86,87} it is clear that solid-state NMR is ideally suited to study polymorphism in bulk samples.

Acknowledgment. We acknowledge NSERC of Canada, the Canada Research Chairs Program and the University of Alberta for supporting our research program. Also, M.J.W. thanks NSERC and Alberta Ingenuity for graduate scholarships. Finally, we thank Guy Bernard and other members of the solid-state NMR group for helpful comments.

Supporting Information Available: X-ray crystallographic files in CIF format and crystal packing diagrams for KFCT at 22 and -80 °C. Carbon-13 and ¹⁵N stationary sample NMR spectra of KFCT. This material is available free of charge via the Internet at http://pubs.acs.org.

IC802134J

⁽⁸⁶⁾ Harris, R. K. Analyst 2006, 131, 351-373.

⁽⁸⁷⁾ Harris, R. K. Polymorphism & Related Phenomena. In *Encyclopedia of Nuclear Magnetic Resonance*; Grant, D. M., Harris, R. K., Eds.; John Wiley and Sons: Chichester, 1996; Vol. 6, pp 3734–3740.